skip to main content


Search for: All records

Creators/Authors contains: "Miller, M. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dominant flow features in the near and intermediate wake of a horizontal-axis wind turbine are studied at near field-scale Reynolds numbers. Measurements of the axial velocity component were performed using a nano-scale hot-wire anemometer and analyzed using spectral methods to reveal the extent and evolution of the flow features. Experiments were conducted at a range of Reynolds numbers, of [Formula: see text], based on the rotor diameter and freestream velocity. Five different downstream locations were surveyed, between [Formula: see text], including the near wake, transition to the intermediate wake, and the intermediate wake. Three dominant wake features are identified and studied: the tip vortices, an annular shear layer in the wake core, and wake meandering. The tip vortices are shown to have a broadband influence in the flow in their vicinity, which locally alters the turbulence in that area. It is shown that shedding in the wake core and wake meandering are two distinct and independent low frequency features, and the wake meandering persists into the intermediate wake, whereas the signatures of the core shedding vanish early in the near wake. 
    more » « less